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Abstract
A new class of 1D discrete nonlinear Schrödinger Hamiltonians with tunable
nonlinearities is introduced, which includes the integrable Ablowitz–Ladik
system as a limit. A new subset of equations, which are derived from
these Hamiltonians using a generalized definition of Poisson brackets, and
collectively referred to as the N-AL equation, is studied. The symmetry
properties of the equation are discussed. These equations are shown to possess
propagating localized solutions, having the continuous translational symmetry
of the one-soliton solution of the Ablowitz–Ladik nonlinear Schrödinger
equation. The N-AL systems are shown to be suitable for studying the
combined effect of the dynamical imbalance of nonlinearity and dispersion
and the Peierls–Nabarro potential, arising from the lattice discreteness, on the
propagating solitary wave-like profiles. A perturbative analysis shows that
the N-AL systems can have discrete breather solutions, due to the presence
of saddle centre bifurcations in phase portraits. The unstaggered localized
states are shown to have positive effective mass. On the other hand, large-
width but small-amplitude staggered localized states have negative effective
mass. The collision dynamics of two colliding solitary wave profiles is studied
numerically. Notwithstanding colliding solitary wave profiles that are seen
to exhibit nontrivial nonsolitonic interactions, certain universal features are
observed in the collision dynamics. The future scope of this work and possible
applications of the N-AL systems are discussed.

PACS numbers: 05.45.Yv, 05.60.Cd, 52.35.Mw, 63.20.Ls, 63.20.Pw

1. Introduction

As is well known, different nonlinear models can possess spatially localized solutions for
solitary waves [1–3]. In many cases, the solitary waves are analysed in the framework
of integrable models which, however, describe realistic physical systems with certain
approximations [4]. Two important examples of integrable nonlinear equations are the
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nonlinear Schrödinger (NLS) equation and the sine-Gordon (s-G) equation. While the
first one is known to form ‘dynamical solitons’, the last one yields ‘kink’ and ‘antikink’
solutions. These are also called ‘topological solitons’ [1]. Dynamical solitons arise from
the acute balance of nonlinearity and dispersion. The origin of topological solitons is the
balance of nonlinearity and constraints from topological invariants [1, 5]. Alongside these
continuous equations, a pioneering example of an integrable discrete differential equation
is the Ablowitz–Ladik equation. This is often referred to as the integrable discretization of
continuous NLS (ALDNLSE) [6–8]. On the other hand, the standard discretization of NLS
gives the nonintegrable discrete nonlinear Schrödinger equation (DNLSE) [9–11].

The utility of the ALDNLSE in the analysis of physical problems is rather tortuous.
Consider, for example, physically motivated models, such as coupled nonlinear atomic strings
with onsite or intersite anharmonic potentials [12], an array of coupled optical waveguides [13],
proton dynamics in hydrogen-bonded chains [4, 14–16], the Davydov and Holstein models
(DHM) for transport in biophysical systems [2, 4, 16], and so on. In these models, either the
ALDNLSE does not appear at all or it does not appear in its pristine form. However, to study
the soliton dynamics perturbatively in these models, the ALDNLSE is the appropriate choice
for the zeroth-order approximation [12, 13, 16, 17]. This clearly shows that the ALDNLSE is
an equation of great significance in nonlinear science. For other applications of this equation
we mention the following examples. The dynamics of low-frequency and high-frequency
intrinsic localized modes in nonlinear lattices can be described to a good approximation by
the ALDNLSE [18, 19]. Again, in the study of dark and bright excitons in systems with
exchange and dipole–dipole interactions, it is shown that in some limiting cases the evolution
equations resulting from model Hamiltonians are reduced to the exactly integrable ALDNLSE
[20]. As another example, we cite the one-dimensional Frölich model of exciton(vibron)–
phonon interaction. This model can be approximated by the ALDNLSE, provided we are
interested in the dynamics of large-width and small-amplitude dynamical solitons [16]. One
other important use of the ALDNLSE lies in the numerical integration of the NLS. This is
done to avoid any numerical instability problem [6].

Any small perturbation may break the integrability so strongly that solitary waves can be
unstable and in the extreme case may altogether disappear. The nonintegrablity in an otherwise
integrable nonlinear equation can also give birth to internal modes, often called ‘shape modes’
in solitary waves. These internal modes can drastically modify the soliton dynamics [21].
The physical origins of integrability-breaking terms can be many. For example, this type
of term can arise from taking into consideration the effect of thermal fluctuations and the
possible absence of order in the system [8, 22–24]. However, the most important one is the
discreteness of the underlying space. One noteworthy example of an integrable nonlinear
equation that becomes nonintegrable due to discretization is the Frenkel–Kontorova (FK)
model, which is the spatially discretizd s-G equation [25]. Another prominent example in this
category is the already-mentioned DNLSE [9–11]. So, relevant in this context is the study
of an IN-DNLS, and also the modified Salerno equation (MSE) [16, 26]. The IN-DNLS is
a hybrid form of the ALDNLSE and the DNLSE with a ‘tunable’ nonlinearity. On the other
hand, in the MSE, the usual DNLSE is replaced by a modified version of the DNLSE, the
ADNLSE which involves acoustic phonons, instead of optical phonons in condensed matter
physics parlance [17]. These equations are studied with the prime objective of understanding
the role of lattice discreteness as a mechanism for the collapse of moving self-localized
states to stable, but pinned localized states [16, 26]. We further note that an IN-DNLS,
which can be continually switched from the DNLSE to the ALDNLSE by varying a single
parameter, is also studied to investigate the discreteness induced oscillatory instabilities of dark
solitons [27].
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One important field of study in nonlinear nonintegrable equations is whether or not
solitary wave-like solutions can exist in these equations. So, consider the NLS with an
additional Hamiltonian perturbation that models a nonlinear interaction between Langmuir
waves and electrons in plasma. It constitutes an interesting example of a continuous nonlinear
nonintegrable equation, which can have solitary waves as well as periodic solutions, and
recurrence. It is further observed by numerical analysis of the nonlinear equation that
recurrence depends sensitively on initial conditions [28]. However, physically highly relevant
and consequently most well studied example is the ‘φ4 equation’. This continuous nonlinear
equation is nonintegrable, in contrast to its ‘cousin’ s-G system. This φ4 equation can have
either solitary wave solutions or ‘kink-like’ solutions with permanent profile. However, these
solutions do not have the simple collision properties of solitons. These solutions can bump,
lock or annihilate each other. In addition, these always emit some oscillatory disturbances or
radiation in the course of a collision. Furthermore, the head-on collisions of kink and antikink
pairs of solutions of the φ4 equation will settle either to a bound state (bion) or to a two-
soliton solution. This settling down is found to depend fractally on the impact velocity. We
further note that all solutions of the φ4 equation have profound physical as well as theoretical
significance [29–33]. In continuation, we mention that the appearance of fractal structure in
the kink–breather interaction is investigated using the FK model [25]. Similarly, a fractal
structure in solitary-wave collisions for the coupled NLS equations is reported. This structure
is observed in the separation velocity versus collision velocity graph [34].

Contrary to common belief, there are nonintegrable discrete systems which possess exact
solitary waves. Indeed, there is also an existence theorem [35]. The key hypothesis in the
proof of the existence theorem is that the interaction potential, V(·), should at least have
superquadratic growth. Since, for the Toda lattice, V (φ) = ab−1(exp(−bφ) + bφ − 1), the
condition is trivially satisfied. It is known that the Toda equation is integrable and it has
soliton solutions [29, 36]. Nontrivial examples are, of course, cubic and quartic systems,
V (φ) = 1

2φ
2 + 1

3aφ
3 (a > 0) and V (φ) = 1

2φ
2 + 1

4bφ
4 (b > 0) studied by Fermi, Pasta

and Ulam (FPU) [29, 35–37]. Another example is systems having a Lennard-Jones potential,
relevant for the macroscopic theory of classical fluids [35]. We again note that one important
property of a spatially discretized nonlinear equation is the existence of intrinsic localized
modes or discrete breathers. For brevity, we mention only the discrete nonlinear Klein–Gordon
equation and FPU equations. These equations are studied extensively, albeit numerically, to
show the existence, stability, mobility, reactivity and also the collisional properties of breathers
[38–43]. In the case of the discrete nonlinear Klein–Gordon equation, it is found that large
breathers have a tendency to take energy from smaller ones. It is also seen in the numerical
analysis that once they are large enough, discrete breathers cease to absorb energy from small
ones. These regulation processes prevent a collapse of the energy into a single huge excitation,
which could destroy the lattice [40, 43].

Here I propose an extended nonintegrable version of the ALDNLSE, which has a ‘tunable’
nonlinearity in the intersite hopping term. At the same time, the form of nonlinearity is such
that it can allow solitary wave-like solutions, as seen say, in the φ4 equation, and its suitable
parallel in the linear regime is one-dimensional correlated disordered systems [44, 45]. It is to
be noted that my case is not covered by the existence theorem that I have already mentioned.
Inasmuch as this nonlinearity is in the intersite hopping term, it serves two important purposes.
First of all, this extra dispersive correction to the ALDNLSE will try to destroy the Ablowitz–
Ladik (AL) soliton by dispersion. So, by varying this term we can investigate the effect of
dispersive imbalance on the maintenance of the moving solitonic profile. It is relevant at
this point to note that both the IN-DNLS and the MSE investigate the competition between
the on-site trapping and the solitonic motion of the AL solitons. In the case of the MSE, it
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is found that the narrow AL solitons, having width smaller than the critical width, will get
pinned by the lattice potential [16, 17]. Similar results are obtained numerically from the
IN-DNLS [26]. Secondly, since the extra dispersive term in the proposed equation breaks
the integrability of the ALDNLSE, the dynamics of the AL solitons will not be transparent to
the lattice discreteness. So, along with the IN-DNLS and the MSE, this model also gives an
opportunity to study further the effect of the Peierls–Nabarro (PN) potential on the dynamics
of solitons [26, 46]. We further note that the DHM yields a very complicated nonlinear
discrete differential equation [16]. So, to gain a better understanding of the DHM, a somewhat
simpler but physically relevant system needs to be considered [16]. This is another important
motivation of this study. It is in fact noteworthy in this context that a slightly modified
ALDNLSE has been studied as a plausible model for dynamical self-trapping in discrete
lattices [47]. As for further motivation of this study, we note that one rapidly emerging field
in nonlinear dynamics is the study of the solitary-wave interaction in nonintegrable nonlinear
models. The emergence of this field is due to the possibility of observing many of the predicted
effects experimentally, including soliton energy and momentum exchange [25, 29–34, 48, 49].
The model that is to be proposed here allows us to study the head-on collision of scalar lattice
solitary waves. Finally, nonlinear phenomena are quite a common occurrence in all branches
of natural science. But, our theoretical understanding of nonlinear equations, particularly that
of nonlinear discrete differential equations is quite limited. So, when viewed from this angle,
another important dimension gets added to the present study.

This paper is organized as follows. In what follows, I first propose a set of discrete
nonintegrableHamiltonians, and derive the equation of interest from the requisite Hamiltonian.
I then study analytically the existence of a moving solitary wave-like solution in this equation.
Since this equation is a perturbated Ablowitz–Ladik equation, I study this problem further
using a standard perturbative method to find trapped and moving solitons. I consider next the
formation of stationary localized states and the effective masses of these states. Subsequently,
I present some numerical results to substantiate the analysis. I also study the collision of two
solitary wave profiles numerically using the equation. Findings from my study are summarized
at the end. In this final section, I also discuss the applicability and future scope of the present
work.

2. A general derivation of the Ablowitz–Ladik class of nonlinear equations

We consider here the following Hamiltonian, H:

H = J
∑
n

(
φ�nφn+1 + φ�n+1φn

) − 1

2

∑
n

l∑
j=1

g
j

0

(
φ�nφn+j + φ�n+jφn

)2
+

2ν

λ

∑
n

|φn|2

− 2

λ

(ν
λ

− J
)∑

n

ln
[
1 + λ|φn|2

]
. (2.1)

It is understood that the Hamiltonian, H , in equation (2.1) describes a conservative system
in which a quasiparticle (exciton, vibron, etc) moves in an one-dimensional chain. To obtain
the time evolution equations for generalized coordinates,

{
φm, φ

�
m

}
, we make use of the

nonstandard Poisson bracket relationship among these generalized coordinates as given in
appendix A. After defining φm = (−1)mψm, we get for m = 1, 2, . . .

Fj
(
ψm, g

j

0

) = g
j

0

∑
σ=±1

(
ψ�mψm+σj + ψ�m+σjψm

)
ψm+σj

F(ψm, λ) = (
1 + λ|ψm|2) l∑

j=1

Fj
(
ψm, g

j

0

) (2.2)
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iψ̇m − 2Jψm + J
(
1 + λ|ψm|2)(ψm+1 + ψm−1) = 2ν|ψm|2ψm − F(ψm, λ). (2.3)

In F(ψm, λ), arguments, g0
j , j = 1, 2, . . . , l have been suppressed, and J > 0. When l = 1,

in equation (2.1) and consequently in equation (2.3), we have just an extra nonlinear nearest-
neighbour coupling in hopping with a coupling constant, g1

0 . This coupling is assumed to arise
due to quasiparticle–phonon interaction [16]. Similarly, when l = 2, we have both nonlinear
nearest-neighbour and next-nearest-neighbour couplings. Coupling constants are g1

0 and g2
0 ,

respectively. So, in this model coupling constants are assumed to depend on the distance
between the sites involved. For any arbitrary l then, a given site, over and above the standard
linear nearest-neighbour coupling, is coupled through nonlinear hopping to l consecutive sites
in general on both sides of it. Of course, the origin of such coupling is assumed to arise due to
the heuristic generalization of quasiparticle–phonon interaction beyond the nearest neighbour.
We further note that in this model also

N =
∞∑

m=−∞
ln

[
1 + λ|ψm|2] = constant (2.4)

as in the original Ablowitz–Ladik equation (see also appendix A). So, if λ|ψm|2 � 1 for all
m, we get

∑
m |ψm|2 ≈ constant. We now consider the following limits of equation (2.3): (1)

When gj0 = 0 for all j , we have the Salerno equation in the quantum version. In the classical
domain, it has been nomenclatured as IN-DNLS and the formation of staggered localized states
from this equation is studied [26, 50, 51]. (2) When ν = 0 as well as gj0 = 0 for all j , we
have the standard Ablowitz–Ladik equation. This equation is known to have a single-soliton
solution [6, 7]. (3) When λ = 0 = ν and also l = 1, we have the model where exciton–phonon
interaction affects only the hopping between nearest neighbours. Of course, to obtain this
particular nonlinear mathematical form of interaction, it is assumed that the lattice relaxation
is faster than the quasiparticle dynamics [16]. This is a very standard assumption which is
used in the Davydov soliton [17, 52] and also in the Rashba and Toyozawa mechanism for the
formation of a self-trapped exciton [53–55]. This equation is also studied for the single-soliton
solution, using the perturbation method [16]. (4) The equation with ν = 0 will be referred
to here as the nonintegrable Ablowitz–Ladik (N-AL) equation. Consider again the situation
where we take l = 1 in the N-AL equation and further ignore altogether in equation (2.3)
the term having g1

0λ. We have then a model equation which describes a truncated version of
the model, in which exciton(vibron)–phonon interaction affects both site-energy and hopping.
We note that a perturbative analysis of the full model is done for the one-soliton solution [16].
Here our plan is to analyse various aspects of the N-AL equation.

Before we proceed further, we define τ = J t,�m = √
λψm,m ∈ Z, and gj = g

j

0
λJ
.

We further note that Fj
(
�m√
λ
, g

j

0

) = 1√
λ
Fj (�m, gj ), j = 1, 2, . . . , l. This, in turn, yields

F(
�m√
λ
, λ

) = 1√
λ
F(�m, 1),m ∈ Z. So, in the limit of ν = 0, we have from equation (2.3) and

m ∈ Z
i�̇m − 2�m +

(
1 + |�m|2)(�m+1 +�m−1) = −F(�m, 1) (2.5)

and equation (2.4) also remains valid with λ = 1 and ψm replaced by �m. Again, F(�m, 1)
should have in its argument g1, g2, . . . , gl , which have been suppressed for convenience. We
note that equation (2.5) possesses a reflection symmetry. To understand this, we consider the
transformation, �m → (−1)m�m exp(−4iτ ). The equation will remain invariant under this
transformation provided τ → −τ and gj → −gj , j ∈ l. Again, if F(�m, 1) = 0,m ∈ Z, the
equation becomes self-dual under this reflection transformation.
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3. Propagating solutions of equation (2.5)

In order to gain an understanding of the nature of the solution of equation (2.5), we consider
the case where gj = 0 for all j . As mentioned earlier, in this limit we have the integrable
Ablowitz–Ladik discrete nonlinear Schrödinger equation (ALDNLSE) [6, 7]. The exact
one-soliton solution of the ALDNLSE, �0

m,m ∈ Z is

�0
m(τ) = sinhµ

cosh[µ(m− x)]
exp[ik(m− x)− iα] = Qm(τ) exp[ik(m− x)− iα] (3.1)

with the following equations for the soliton parameters:

µ̇ = 0 k̇ = 0 α̇ = ω (3.2)

ω = 2[1 − coshµ cos k] (3.3)

ẋ = 2

µ
sinhµ sin k. (3.4)

So, for each µ there exists a band of velocities (see equation (3.4)) at which the localized
state or the one-soliton state can travel without experiencing any PN pinning due to the lattice
discreteness [26, 42, 46]. We also note that for a given k, µ ∈ [0,∞]. Mathematically, the
one-soliton solution of the ALDNLSE describes two parameters, namely k and µ, a family
of curves. So, even if we pin the value of one of those parameters to a prescribed value,
equation (3.1) will still be a solution of the ALDNLSE.

We now consider F(
�0
m, 1

)
. Introducing equation (3.1) in equation (2.5) we get

F(
�0
m, 1

)
2
(
1 +Q2

m

)
�0
m(τ)

=
l∑

j=1

{
gj cos kj

[(
Q2
m+j +Q2

m−j
)

cos kj + i
(
Q2
m+j −Q2

m−j
)

sin kj
]}
.

(3.5)

For convenience in further discussion, we consider only one term, say the lth term of the
sum in equation (3.5). We note that for cos kl = 0, permissible values of k are k =
π − ( 2j1+1

l

)(
π
2

)
, j1 = 0, 1, 2, . . . , (2l − 1). So, there are 2l permissible values of k for

k ∈ [−π, π]. We now state the following results.

(1) For l = 1,F(
�0
m, 1

) = 0 for m ∈ Z, if |k| = π
2 . So, for this case equation (3.1) with

k = ±π
2 are the solitary wave-like solutions of equation (2.5). We further note that

solitary waves have the maximum possible speed.
(2) l is odd and only odd values of j in the sum in the Hamiltonian,H , are permissible. Also,

in this case, only |k| = π
2 is allowed. So, equation (3.1) with these particular values of k

are the solitary wave-like solutions of equation (2.5).
(3) l is even and only even values of j in the sum in equation (3.5) are permissible. In this

case, there is no permissible value of k. So, equation (2.5) will not have any solitary
wave-like solution.

(4) l is arbitrary and j takes odd values with at least one even value. In this case, even if l
is odd, there is no permissible value of k. So, equation (2.5) has no solitary wave-like
solution.

(5) There is only one term, say the lth term, in the sum in equation (3.5). In this situation,
equation (3.1) describes the solitary wave-like solution of equation (2.5) with 2l
permissible values of k which are already given.

We also note that when |gj | � 1 for j = 1, 2, . . . , l, equation (2.5) then can be treated
as a perturbed ALDNLSE. In this situation, we can use the standard perturbation theory to
investigate the soliton dynamics from equation (2.5). This aspect is considered next.
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4. The perturbative soliton dynamics of equation (2.5)

The method is amply discussed in the literature [16, 17, 56]. In this method, it is assumed that
the zeroth-order solution is the standard one-soliton solution of the ALDNLSE. It is further
assumed that the effect of perturbation on the soliton dynamics can be adequately taken into
consideration by allowing four parameters, namely x, k, µ and α, to vary adiabatically in
time, τ . Application of the method to the N-AL equation gives for µ, k and x

S(µ, x) =
∞∑
s=1

π2s
µ

sinh π2s
µ

cos 2πsx

G(k, l, µ) =
l∑

j=1

gj
cos2kj

sinh2µj

G1(k, l, µ) = 4
sinh4µ

µ2
[µ cothµ− 1 − 2S(µ, x)]

G2(k, l, µ) = G1(k, l, µ)
∂G(l, k, µ)

∂k
µ̇ = 0

(4.1)

k̇ = −8
sinh4µ

µ2
G(k, l, µ)

∂S(µ, x)

∂x
(4.2)

ẋ = −2
sinhµ

µ

∂ cos k

∂k
−G2(k, l, µ). (4.3)

We first note that the famous Poisson sum formula is used to obtain S(µ, x) and G(k, l, µ)
[16]. In the situation where cos kj = 0 for all j , bothG(k, l, µ) and ∂G(l,k,µ)

∂k
are zero. In this

case, it is easy to see that µ̇, k̇ and ẋ are given by equations (3.2) and (3.4), respectively. Of
course, for ẋ only certain values of k for k ∈ [−π, π] are allowed. Notwithstanding this, this
case is, as expected, similar to the one-soliton solution of the ALDNLSE. We consider next
the problem of an effective Hamiltonian.

4.1. An effective Hamiltonian

In order to derive an effective Hamiltonian for the dynamical system described by
equations (4.2) and (4.3), we multiply these two equations by ẋ and k̇, respectively. Now,
subtracting the first one from the second, we get

−
[

2
sinhµ

µ

∂ cos k

∂k
+ 4

sinh4µ

µ2
[µ cothµ− 1 − 2S(µ, x)]

∂G(l, k, µ)

∂k

]
k̇

+ 8
sinh4µ

µ2
G(k, l, µ)

∂S(µ, x)

∂x
ẋ = 0. (4.4)

It is easy to see that equation (4.4) defines a constant of motion of the dynamical system.
This constant can be called the effective Hamiltonian,Heff(x, k, µ, l), of the system and from
equation (4.4) we get

Heff(x, k, µ, l) = −2
sinhµ

µ
cos k − 4

sinh4µ

µ2
[µ cothµ− 1 − 2S(µ, x)]G(l, k, µ). (4.5)

Again, it is easy to see from equation (4.4) that

ẋ = ∂Heff

∂k
and k̇ = −∂Heff

∂x
(4.6)
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Table 1. Nature of fixed points from linearization analysis.

Nature of fixed points
xs = p

2 ks = nπ

p n Region I Region II Region III

Even Even Saddle Saddle Saddle
Odd Even Centre Centre Centre
Odd Odd Saddle Centre Centre
Even Odd Centre Centre Saddle

together yield the original equations of ẋ and k̇. In the subsequent analysis, the l = 1
case, being physically the most relevant, is analysed. In another simplification, S(µ, x) is
approximated by its most dominant first term. This simplification will not make any qualitative
change in the dynamics.

4.2. The analysis of fixed points

To obtain the fixed points of the set of equations, namely equations (4.2) and (4.3), we set
ẋs = 0 = k̇s . This then gives (xs, ks) = (

p

2 , nπ
)

where p and n = 0,±1,±2, . . . . To find the
phase portraits around these fixed points, we define z1 = x − xs and z2 = k − ks . We define
for convenience and clarity

A0(µ) = sinhµ

µ

A1(µ) = A2
0(µ)(µ cothµ− 1) (4.7)

A2(µ) = A2
0(µ)

π2

µ

sinh π2

µ

.

We further define

B0(µ, p) = A1(µ)− (−1)p2A2(µ)

B1(µ, g1, p, n) = (−1)nA0(µ) + 4g1B0(µ, p) (4.8)

B2(µ, g1) = 16π2g1A2(µ).

Now, because of our stated assumptions, we get

ż1 = 2B1(µ, g1, p, n)z2 ż2 = (−1)p2B2(µ, g1)z1. (4.9)

This set of equations, in turn, yields

z2
1

B1(µ, g1, p, n)
− (−1)p

z2
2

B2(µ, g1)
= constant. (4.10)

From equation (4.10), it is transparent that the system has only two types of fixed points.
These are centres and saddle hyperbolic fixed points. An in-depth analysis of fixed points is
included in appendix B. The result of our analysis is tabulated in table 1. We note that there are
two important values of µ, namely µr(g1, oddp), and µr(g1, evenp), and these are roots of
B1(µ, g1, p, n). Furthermore, for a given value of g1 > 0, µr(g1, evenp) > µr(g1, oddp).
It is shown in figure 1. By region I is meant that µ < µr(g1, oddp). Regions II
and III are respectively characterized by µr(g1, oddp) � µ < µr(g1, evenp) and
µ � µr(g1, evenp).
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0.0 0.5 1.0 1.5 2.0 2.5g1
0.5

2.5

4.5

6.5

µ r(g
1, p

)

II

I

Figure 1. This shows the variation of µr(g1, p) as a function of g1 where µr is the root of
B1(µ, g1, p, n) (equation (4.8) in the text). n is odd. I: p is odd and II: p is even.

4.3. A numerical analysis of phase portraits

Regarding the numerical investigation of phase diagrams around fixed points, we note that
there are altogether 12 possibilities. Four possibilities arise from xs and ks being even or
odd. Again, for each case, there are three possibilities, depending on the magnitude of µ.
In this discussion, we consider ks = 0 and π . Along the line ks = 0 we have a set of fixed
points at xs = 0,± 1

2 ,±1,± 3
2 ,±2, . . . . According to the analysis, based on linearization,

xs = 0,±1,±2, . . . should be saddle hyperbolic fixed points. Between every two consecutive
saddle points, one should naturally expect centres. This is perfectly borne out in the numerical
investigation (figure 2). It is also to be noted that figure 2 shows the phase diagram in the
region I (µ < µr(g1, oddp)). To understand the origin of a saddle fixed point between two
consecutive centres, we note that two outermost ellipses encircling two centres will definitely
touch at a point on the x-axis. Then, the flow of phase curves emanating from this point as well
as in the vicinity of it will indicate a saddle hyperbolic fixed point. By a similar argument, the
appearance of a centre between two consecutive saddle fixed points can be understood. It is
also found that the absolute critical value of k, below which localization of a soliton occurs,
increases monotonically with increasing µ. This behaviour is consistent with the physics of
the problem.

We consider now the case of ks = π . It has certain interesting twists, which is quite
a common occurrence in the dynamics of nonlinear systems [58]. In region I, that is, µ <

µr(g1, oddp), according to our standard linearization-based analysis, xs = 0,±1,±2, . . .
should be centres. On the other hand, xs = ± 1

2 ,± 3
2 , . . . should be saddle hyperbolic fixed

points. The reason to have a saddle hyperbolic fixed point between two consecutive centres
has already been put forward in the previous paragraph. Our numerical investigation also
confirms this result (figure 2). In region II (µr(g1, oddp) � µ < µr(g1, evenp)), the
linearization analysis tells us that all fixed points along the line ks = π are centres. To
understand this scenario, we note the following. Consider two centres, which are next but
one to each other. Outermost ellipses encircling these fixed points can also intersect. We
then have a convex lens-type region in the phase space (figure 3). Within this region of
phase space, phase curves will have no other option but to close around a point on the x-axis.
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Figure 2. The bottom part of the figure is the phase portrait that shows the trapped and the moving
solitons in region I for the fixed points having ks = 0.0. For moving solitons, initial conditions are
{xs, km0} = {0.0, π40 } and {0.0, π30 }, respectively. The upper part of the figure is the phase portrait
that shows the trapped and the moving solitons in region I for the fixed points having ks = π .
For the moving soliton, {xs, kmπ } = {0.5, 21π

20 } is the initial choice. {xs} are shown in the figure.
l = 1, g1 = 0.5 and µ = 1.0 for all curves in the figure. Equation (4.5) is used to obtain this phase
portrait. (See also the text.)

–0.70 –0.10 0.50 1.10 1.70x
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2.90

3.30

3.70

k

Figure 3. This phase portrait shows the trapped and the moving solitons in region II for fixed points
having ks = π . {xs} are, of course, shown in the figure. As per the text l = 1. Other parameters are
g1 = 0.5 and µ = 1.15. For the moving soliton, the chosen initial point is {xs , kmπ } = {0.5, 13π

12 }.

This fixed point will also then be another centre. This is clearly seen in figure 3, which
describes the phase diagram of the soliton dynamics in the region II. It is needless to say
that the phase diagram is very interesting and unique. To the best of my knowledge, this is
the first case where a chain of centres with no hyperbolic fixed point is found along the line
ks = π, and more generally ks = (2l2 + 1)where l2 = 0,±1,±2, . . . . We further note that
the dotted curve in figure 3 has indeed the appearance of a heteroclinic orbit [57, 58], which
in turn will also imply the existence of saddle points at xs = p

2 , wherep = ±1,±2, . . . .
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Figure 4. This phase portrait shows the trapped as well as the moving solitons in region III for fixed
points having ks = π . {xs} are, of course, shown in the figure. As per the text l = 1. Furthermore,
g1 = 0.5 and µ = 1.2. For moving solitons, the chosen initial data are {xs, kmπ } = {0.5, 7π

6 } and

{0.0, 5π
4 }, respectively.

So, it is to be noted that there are no saddle points in the region II, for ks = π . The dotted
curve in figure 3, albeit its appearance of a heteroclinic orbit, shows a marginally moving
solitary wave, obtained by the perturbative method. This further implies that there will be
moving solitary-wave solutions in this region too whenever k exceeds a critical value. This is
discussed later in this section.

The phase diagram in region III is shown in figure 4. This region is defined by
µ � µr(g1, evenp). According to the linearization analysis, along the line ks = π, xs =
± 1

2 ,± 3
2 , . . . should be centres. This is indeed found in the numerical investigation. Again,

the same linearization analysis tells that xs = 0,±1,±2, . . . will be saddle hyperbolic fixed
points. From the numerical study with µ = 1.2 and g1 = 0.5, we find that up to a certain
distance from each of these fixed points, phase curves tend to diverge from the fixed points,
indicating their hyperbolic structure. However, after a critical value of x, phase curves turn
back to make closed curves. This happens up to a certain maximum value of x from the
relevant fixed point on the line ks = π . After that value of x, phase curves close around the
nearest centre (figure 4). In case of xs = 0, it is found that the phase curve with the initial
value of x, x0 = 0.306, closes around xs = 0. But, for x0 = 0.307, the phase curve encircles
xs = 0.5. So, for these two fixed points, the transition point is somewhere in between these
two values.

It is important to realize that in this part of the problem, that is µ � µr(g1, oddp),
we find four important phenomena that are encountered in nonlinear dynamics, namely
(i) bifurcation, (ii) discrete breathers, (iii) inversion of stability and (iv) homoclinic
connections [38, 57–60]. We note that for µr(g1, oddp) � µ < µr(g1, evenp), that is, in
region II, all saddle points are changed to centres (figure 3). So, we obtain a bifurcation in
the phase portrait at µ = µr(g1, oddp). Furthermore it is a saddle-centre bifurcation. Again,
at this bifurcation point, it is easy to show that we have spatially localized but time periodic
solutions. These localized solutions can be pinned at one of the permissible values of xs ,
namely at xs = ± 1

2 ,± 3
2 , . . . . These are, by definition, discrete breathers [38, 60]. To see

it further, we examine equation (4.9). Since at µ = µ(g1, oddp),B1 = 0, from the first
equation of equation (4.9) we find that ż1 = 0. The consistent solution is then z1 = 0. This in
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turn gives x = xs (oddp) = (
l1 + 1

2

)
where l1 = 0,±1,±2, . . . . Then the second equation of

equation (4.9) gives ż2 = 0. This implies that k = ks = (2l2 + 1)π where l2 = 0,±1,±2, . . . .
For this particular case, ks = π or l2 = 0. From the perturbative calculation of α appearing in
equation (3.1) [17], it can be easily shown that α is proportional to τ = J t . The energy of the
breather in terms of original variables [26] is

Ẽ[µr(g1, oddp)] = 1 + 2g1
sinhµr(g1, oddp)

µr(g1, oddp)


1 − µr(g1, oddp) cothµr(g1, oddp)

+
∞∑
s=1

(−1)s
π2s

µr (g1,oddp)

sinh π2s
µr (g1,oddp)


 (4.11)

Ebreather = H [µr(g1, oddp)] = 4J

λ
sinhµr(g1, oddp)Ẽ[µr(g1, oddp)].

We also note that for J
λ
> 0, this is the minimum-energy spatially localized state. Inasmuch

as equation (2.5) has a reflection symmetry, another discrete breather will be obtained by the
transformation g1 → −g1. This is discussed later.

We again note that our linearization analysis suggests that at µ = µ(g1, evenp), we have
another bifurcation. This time it is a centre-saddle bifurcation (figure 4). So, this model
exhibits an important phenomenon of nonlinear dynamics, namely, ‘inversion of stability’. It
is also contextually important to note that in several other models the inversion of stability
is observed by numerical simulations [39, 61]. On the other hand, our work provides a
mathematically tractable model, which gives a deeper insight into the phenomenon.

We find that in region III the phase portraits around xs = 0,±1,±2, . . . contain
homoclinic connections or homoclinic orbits [57, 58]. Furthermore, in this region, for each
saddle, there are two symmetrically placed homoclinic connections of saddle points connected
to itself. Note that the orbits form a figure of eight around every saddle point (see figure 4)
[57, 58]. We conclude this section by mentioning the following points. For ks = π , in region
I, saddles are connected by heteroclinic orbits (see the top of figure 2). On the other hand,
in region III, every saddle point is connected to itself by homoclinic orbits (see figure 4). In
other words, the dynamics of the system in the neighbourhood of saddle points is disconnected
in region III. The other pertinent point to note from this perturbative analysis is that for all
permissible values of µ and irrespective of the value of ks , we get solitary wave-like solutions.
This is quite different from what is found by the similar analysis in the DNLSE and the MSE
[16, 17]. To understand the difference, we refer to figure 2. We note that both phase portraits
in figure 2 arise due to chains of single minimum symmetric potential wells at ks = 0, and
π . This is actually true for all permissible values of ks . However, minima of these potential
wells at ks = 2lπ align perfectly with maxima of potential wells at ks = 2(l + 1)π , where
l = 0,±1,±2, . . . and vice versa. In case of the DNLSE and the MSE, whenµ = µcr, minima
of these potential wells at ks = 2lπ touch maxima of the potential wells at ks = (2l + 1)π .
So, when µ exceeds a critical value in these models, there is no region free of potential wells.
Consequently, we cannot have any moving solitary wave-like solutions. When µ < µcr, we
shall get both trapped and moving solitons in these models. On the other hand, in the present
model, we must have a undistorted propagating solitary waves at k = (2n + 1) π2 , where
n = 0,±1,±2, . . . for all values of µ (see equations (4.1)–(4.3)). This, in turn, prohibits
the fusing of potential wells of the kind just mentioned. Hence, in this model there will be
always a potential well-free region between two chains of potential wells. Consequently, in
this model we shall always get propagating solitary wave-like solutions for all values of µ and
ks as seen in all phase portraits.
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5. Stationary localized states

To study stationary localized states of equation (2.5), we seek an oscillatory solution of the
form [26]

�m(τ) = Qm(τ) exp[i(km− ωτ + σ0)] exp[−2iτ ] m ∈ Z (5.1)

where Qm is real and σ0 is a constant phase factor. From the real and imaginary parts of
equation (2.5), we have

(̂Q̂)m = ωQm + cos k
(
1 +Q2

m

)
(Qm+1 +Qm−1)

+ 2
(
1 +Q2

m

)
Qm

l∑
j=1

gj cos2 kj
(
Q2
m+j +Q2

m−j
) = 0 (5.2)

Q̇m + sin k
(
1 +Q2

m

)
(Qm+1 −Qm−1) = −2

(
1 +Q2

m

)
Qm

l∑
j=1

gj cos kj sin kj
(
Q2
m+j −Q2

m−j
)

(5.3)

where Q̂ is the column vector (Q1,Q2, . . . ,Qm, . . .) and ̂ is the matrix defined by the
left-hand side of equation (5.2). Equation (5.2) with vanishing boundary condition constitutes
a nonlinear eigenvalue problem for localized states [10, 11, 26]. Equation (5.3) determines
the time evolution of the localized states. It is a trite algebra to show that when gj = 0
for all j , Qm(τ) given by equation (3.1) is a solution of equations (5.2) and (5.3). When
k = 0 orπ,Qm,m ∈ Z is stationary. A localized state is called ‘staggered’ if k = π , and
‘unstaggered’ if k = 0. We further observe that under the transformation Qm → (−1)mQm,
equation (5.2) will remain invariant if ω → −ω and gj → −gj j ∈ l. This is indeed in
accordance with the reflection symmetry of equation (2.5). This result in turn implies that if an
unstaggered localized state, Qm exp[−iωτ ], is a solution of equation (5.2), the corresponding
staggered localized state, (−1)mQm exp[iωτ ], is then a solution of the same, providedgj , j ∈ l
changes sign for all j. To determine the locations of these localized states, we shall specialize
on the l = 1 case. This simplification will not affect the merit of the discussion. From
equation (5.2), we have

ω = −2 cos k − (cos k + 2g1 cos2 k)

∑
m Q

2
m(Qm+1 +Qm−1)∑

m Qm

− 2g1 cos2 k

∑
m Q

3
m

(
Q2
m+1 +Q2

m−1

)
∑

m Qm

. (5.4)

We suppose thatQm > 0,m ∈ Z and |g1| � 1. Then, the staggered state lies above the phonon
band, while the unstaggered state lies below. We further note that when λ → 0, |g1| → ∞.

In this case, there is no localized state, staggered or unstaggered, below the phonon band if
g1 < 0, or above the phonon band for g1 > 0.

The next important point is the effective mass of unstaggered and staggered localized
states [16, 17, 26]. For this we consider the Hamiltonian, Heff , given by equation (4.5). This
consideration will allow us to obtain expressions for the effective mass for almost unstaggered
and almost staggered states along with the fully unstaggered and fully staggered localized
states [16, 17]. To calculate the effective mass of nearly unstaggered localized states, we let
k → 0 in equation (4.5). This in turn yields

lim
k→0

Heff(x, k, µ) ∼ 1
2m

−1
eff (x)k

2 − 2A0(µ)− 4g1A1(µ) + 8g1A2(µ) cos 2πx +O(k4) (5.5)
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where we define

m−1
eff (x) = 2A0(µ) + 8g1A1(µ)− 16g1A2(µ) cos 2πx (5.6)

and A0, A1 and A2 are already defined in the text (see equation (4.7)). We note that
meff(x) is an even function of both µ and x. It is to be noted that because of the proposed
spatial dependence of meff , this is a generalized definition of the quantity. Furthermore, by
comparing equation (5.6) with equation (4.8), we find that m−1

eff (0) = 2B1(µ, g1, evenp, 0)
and m−1

eff

(
1
2

) = 2B1(µ, g1, oddp, 0). As n is even in this case, we know from our analysis
of B1(µ, g1, p, n) (appendix B) that for the coupling constant g1 > 0, the effective mass of
unstaggered and nearly unstaggered states is positive definite.

To obtain the effective mass of staggered localized states, we put k = π − θ and then let
θ → 0. This procedure gives

−m−1
eff (x) = 2A0(µ)− 8g1A1(µ) + 16g1A2(µ) cos 2πx. (5.7)

Consequently, we get from equation (5.7) that when µ → 0,m−1
eff (x) → −2. Furthermore,

m−1
eff (0) = 2B1(µ, g1, evenp, 1) and m−1

eff

(
1
2

) = 2B1(µ, g1, oddp, 1). So, depending
on the value of g1 > 0, there will be a critical value of µ, µcr(g1), such that for
|µ| > |µcr(g1)|, staggered as well as nearly staggered localized states will have positive
effective mass. In fact, equation (5.7) has both lower and upper critical values of µ, namely
µl

cr = µr(g1, oddp) and µu
cr = µr(g1, evenp), depending on whether cos 2πx = −1 or 1

(see appendix B). Figure 1 also records the dependence of these critical points on g1. For
0 < |x| < 1

2 , µ
l
cr < µcr(g1) < µu

cr. We note that when |µ − µcr(g1)| → 0,
∣∣m−1

eff (x)
∣∣ → 0.

This in turn implies that forµ in the ε-neighbourhood ofµcr(g1), the system will have strongly
localized staggered states. We further note from equation (3.1) that µ−1 gives the measure of
the localization length. So, states for which µ → 0 in equation (3.1) have long localization
lengths. We conclude from this analysis then that stationary staggered localized states in the
vicinity of the upper phonon band edge will have negative effective mass.

6. A numerical study of equation (2.5)

6.1. A study of solitary wave-like solutions

For the purpose of numerical integration, we first replace �m,m = 1, 2, 3, . . . by
�m exp(−2iτ ) in equation (2.5). Next we write �m = �1m + Im�2m. From equation (2.5),
we then get

−�̇1m = (
1 +�2

1m +�2
2m

)[
(�2(m+1) + �2(m−1)) + 2

l∑
j=1

gj {(�1m�1(m+j)

+�2m�2(m+j))�2(m+j) + (�1m�1(m−j) +�2m�2(m−j))�2(m−j)}
]

(6.1)

�̇2m = (
1 +�2

1m +�2
2m

)[
(�1(m+1) +�1(m−1)) + 2

l∑
j=1

gj {(�1m�1(m+j)

+�2m�2(m+j))�1(m+j) + (�1m�1(m−j) +�2m�2(m−j))�1(m−j)}
]
. (6.2)

For the initial condition, we use [8]

�1m(τ = 0) = sinhµ

coshmµ
cos km (6.3)
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Figure 5. The N-AL dynamics of an initial Ablowitz–Ladik soliton with k = π
2 (equation (2.5)).

Furthermore, l = 1, g1 = 0.5 and µ = 1.0. The number of sites in the chain is 257 and the origin
is taken at the centre of the chain.

�2m(τ = 0) = sinhµ

coshmµ
sin km. (6.4)

The fourth-order Runge–Kutta method is used to integrate these equations. The chosen time
interval for all calculations is 10−4. Furthermore, equation (2.4) with λ = 1 is used to check
the accuracy of the integration. In this study, an one-dimensional lattice comprising 257 lattice
points with unit lattice spacing is used. The initial condition is centred about the middle of
the lattice, that is, about the 129th site. For the numerical analysis, we consider two cases,
namely (i) l = 1 and (ii) l = 2 but g1 = 0 in equation (2.5). For all cases that are presented
in this section µ = 1 and gj = 0.5, j = 1, 2.

We note that in the first case the permissible values of k are ±π
2 while for the second these

values are ±π
4 and ± 3π

4 . For the first case, the absolute amplitude of the solitary wave-like
solution (Qm; see equation (3.1)) as a function of site and time (m, τ ) is shown in figure 5
for k = π

2 . Furthermore, for this case the time evolution of the absolute amplitude of the
solitary wave (Qm(τ)) for some arbitrarily chosen sites, m, are shown in curves I, II and III in
figure 6. For the second case k = − 3π

4 is chosen and the spacetime evolution of Qm(τ)

is shown in figure 7. We note that in all cases the initial profile moves undistorted. These
pictures are, as expected, identical to the spacetime evolution of the pure AL solitons. This is
also verified by numerical integration.

6.2. A study of the PN pinning of solitary waves

Another important aspect that we study numerically here is the effect of the PN potential,
which arises due to the nonintegrability term in equation (2.5) on the spacetime evolution
of the initial profile given by equations (6.3) and (6.4) [26, 41, 42, 46]. We note that the
nonintegrability effect is maximum when k = 0 in equation (3.1). On the other hand, it
totally vanishes at |k| = π

2 for l = 1. We study again the propagation of an initial profile
for l = 1, but with µ = 1.0 and g1 = 0.5. The accuracy of the integration is checked
by the constancy of N (equation (2.4)). It is found that the loss of constancy becomes
more and more discernible as

∣∣|k| − π
2

∣∣ → π
2 . This makes the simulation for small values

of k less reliable. Figure 8 shows the spacetime evolution of Qm(τ) (equation (3.1)) for
k = π

3 . We note that both the dispersion and the distortion of the initial profile are very
transparent in figure 8. For better understanding, we also show through curves I(a)–III(a) in
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Figure 6. The N-AL equation (equation (2.5)) determined time evolution of Qm(τ)

(equation (3.1)) for some chosen values of sites m. k = π
2 and π

3 , respectively. For both
cases l = 1, g1 = 0.5 and µ = 1.0. The number of sites in the chain is 257 and the origin is taken
at the centre of the chain. I, I(a): m = 130; II, II(a): m = 140; III, III(a): m = 150. The (a) series is
for k = π

3 while the other one is for k = π
2 .
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Figure 7. The N-AL dynamics of an initial Ablowitz–Ladik soliton with k = − 3π
4

(equation (2.5)). Furthermore, l = 2, g1 = 0.0, g2 = 0.5 and µ = 1.0. The number of sites
in the chain is 257 and the origin is taken at the centre of the chain.

figure 6 and I(a)–IV(a) in figure 9 the time evolution of theQm(τ) for some arbitrarily chosen
site or m values for k = π

3 and π
4 , respectively. We note that the distortion of the initial

profile and the intensity of the phonon tail increase as k decreases from π
3 to π

4 . This is, of
course, in the expected direction. Furthermore, in both cases the initial profile slows down
by leaving the phonon behind in the propagation. Through curves I–IV in figure 9 the time
evolution of Qm(τ) for the same values of m from the Ablowitz–Ladik equation are included
for comparison. This slowing down is very transparent in figure 9. So, it is reasonable to
assume that these moving profiles will ultimately be trapped. However, we do not observe
the total trapping in our simulations, as seen, for example in IN-DNLS [26]. We possibly
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Figure 8. The N-AL dynamics of an initial Ablowitz–Ladik soliton with k = π
3 (equation (2.5)).

Furthermore, l = 1, g1 = 0.5 and µ = 1.0. The number of sites in the chain is 257 and the origin
is taken at the centre of the chain.
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Figure 9. Same as figure 6, but with k = π
4 for both cases. I, I(a): m = 130; II, II(a): m = 135;

III, III(a): m = 140; IV, IV(a): m = 142. While the (a) series is for the N-AL equation, the other
one is for the Ablowitz–Ladik soliton.

need large integrability-breaking terms to see the total trapping in the time of the simulations.
In the case of k = π

2 , the nonintegrability term in equation (2.5) vanishes, and, as expected,
the initial profile (equations (6.3) and (6.4)) propagates undistorted without any change in
its speed and leaving no phonon tail behind as can be seen in figure 5 and curves I to III in
figure 6.

6.3. A study of the interaction of two solitary waves

An important and also extensively studied field in nonlinear dynamics is the investigation
and the understanding of the interaction of two or more solitary waves of nonintegrable
nonlinear equations and the components of vector solitons in integrable nonlinear equations.
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Figure 10. The N-AL collision dynamics of two initial AL pulses. k2 = −k1 = π
2 . l = 1, g1 = 0.5

and µ = 1.0 as mentioned in the text. The number of sites in the chain is 313 and the origin is
taken at the middle of the chain.

For this purpose, continuous nonlinear nonintegrable equations are studied extensively
[25, 29–34, 40, 43, 48, 49]. In the case of discrete nonlinear nonintegrable equations,
we note that the discrete nonlinear Klein–Gordon equation is used to study the collision of
breathers and inelastic interaction of weak-amplitude phonons with breathers. Fission, fusion
and spallation of breathers are found in these studies [40, 43, 62]. In this context, therefore, the
N-AL equation (equation (2.5)) that is proposed here assumes a very great significance. This
equation gives us further opportunity to study the interaction of solitary waves of a discrete
nonlinear equation. To investigate this problem, as the initial condition we take the function
[31, 32]

�m(0) = f1 sinhµ

cosh[µ(m− x0)]
exp[ik1(m− x0] +

f2 sinhµ

cosh[µ(m + x0)]
exp[ik2(m + x0]. (6.5)

We note that the function has two peaks at x = x0 and x = −x0, respectively. The velocity of
the peak at x0 is sinhµ

µ
sin k1 while the velocity of the other peak at x = −x0 is sinhµ

µ
sin k2. We

further note that when |x0| → ∞, equation (6.5) gives two AL-type solitons (equation (3.1)).
This analysis is also done numerically using the fourth-order Runge–Kutta method, and the
origin is placed at the centre of the one-dimensional chain. For all studies, we take 2|x0| =
30 units, and f1 = f2 = 1.0.

The first one is as usual the l = 1 case. For this analysis we take for all cases µ = 1.0
g1 = 0.5. Inasmuch as |k| = π

2 in equation (3.1) is an exact one-soliton solution of
equation (2.5), we consider first the case k2 = −k1 = π

2 . In this case, we find that two
peaks emerge after the collision without any change in shape and without any emission of a
phonon (see also [30]). Of course, there can be phase shifts in these peaks after collision, but
this is not investigated. This case of collision of solitons is shown in figure 10. We further note
that the result is found to be independent of the value of g1. But, we did not check the effect
of changing µ on the collision. The other case that is considered is k1 = − π

2.05 and k2 = π
2 .

When g1 = 0, we find that two solitons collide and after the collision again two peaks emerge
without any change in shape and without any emission of a phonon. This is not shown here.
On the other hand, when we give a nonzero value of g1 (in our case 0.5), we find the fusion of
two solitons on collision (see also [42]). Inasmuch as k2 = π

2 , the direction of the maximum
velocity is in the direction of increasing lattice sites. The fused solution, as expected, moves
in that direction. But, at the same time it emits phonons, as shown in figure11 [29].
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Figure 11. Same as in figure 10, but with k1 = π
2.05 and k2 = − π

2 . l = 1, g1 = 0.5 and µ = 1.0.
In this simulation, the number of sites is 257.
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Figure 12. The N-AL collision dynamics of two initial AL pulses. k2 = −k1 = 3π
4 .

l = 2, g1 = 0.0, g2 = 0.5 and µ = 1.5 as mentioned in the text. The number of sites in
the chain is 313 and the origin is taken at the middle of the chain.

The second case that we study is the case of l = 2, but g1 = 0.0. In this case we have four
permissible values of k, namely k = ± 3π

4 and ±π
4 . Of course, there are only two velocities,

just as in the previous case. However, if we choose k1 and k2 from these allowed values of k,
for |x0| → ∞, equation (6.5) will be the solution of equation (2.5). In this analysis, we choose
µ = 1.5, g2 = 0.5 and 2|x0| = 30 units. For this case, the spacetime evolution of a solitary
wave with k = − 3π

4 is already shown in figure 7. In the first case we take k1 = −k2 = − 3π
4

and the numerical simulation is shown in figure 12. In this case we see that two solitary
waves do not pass each other. On the other hand, after coming close to each other, they are
repelled. Other cases that are studied are k1 = −π

4 , but k2 = 3π
4 , and k1 = − 3π

4 , but k2 = π
4 ,

respectively. Our numerical simulations for these cases are shown in figures 13 and 14,
respectively. In the first case, we see that two solitary waves fuse after collision and then move
in the direction of positive velocity simultaneously emitting phonons. In the second case,
however, we see the total destruction of the initial profile, equation (6.5), after the collision.
This implies that there is no definite pattern in the collision process. Furthermore, the result
of collision appears to be very sensitive to the phases of the colliding solitary waves. So, there
should be attempts to understand this collision physics analytically, using the perturbative
method and collective coordinate method [33].
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Figure 13. Same as in figure 12, but with k1 = − π
4 and k2 = 3π

4 . l = 2, g1 = 0.0, g2 = 0.5 and
µ = 1.5. In this simulation, the number of sites is 313.
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Figure 14. Same as in figure 13, but with k1 = − 3π
4 and k2 = π

4 . l = 2, g1 = 0.0, g2 = 0.5 and
µ = 1.5. In this simulation, the number of sites is 313.

7. Summary

A new class of nonintegrable Hamiltonians with tunable nonlinearities is proposed here to
derive a class of (1 + 1)-dimensional nonintegrable discrete nonlinear Schrödinger equations,
which include both some known nonlinear equations, such as the Ablowitz–Ladik nonlinear
Schrödinger equation [6, 7], IN-DNLS [26, 50, 51] and a new subset, collectively christened
as the N-AL equation (equation (2.5)). The relevant equations are obtained from the proposed
Hamiltonian by the standard procedure of classical mechanics, but by employing a standard
generalized definition of Poisson brackets, as shown in appendix A. In this paper, two cases
of the N-AL equation are investigated analytically as well as numerically. These cases are
(i) l = 1 and (ii) l = 2, butg1 = 0.0 in equation (2.5).

An important characteristic of the N-AL equation is that it can allow spatially localized
states of AL type (equation (3.1)) for certain permissible values of the parameter k to
travel without distortion and without emitting phonons. This is found both analytically as
well as numerically. So, these special solutions have in them the required balance of the
nonlinearity and dispersion [5] and also are transparent to the PN potential arising from the
lattice discreteness [26, 42, 46]. The transparency of these solutions to the PN potential
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proves that these have the continuous translational symmetry of the one-soliton solution of
the Ablowitz–Ladik equation (equation (3.1)) [26]. So, the N-AL equation provides another
interesting example of nonintegrable discrete nonlinear equations which have solitary wave-
like solutions [35].

Trapped and moving solitons are found from equation (2.5). This analysis is done using a
standard perturbative procedure [16, 17]. The most interesting part of this analysis, however,
is that it shows the existence of saddle-centre bifurcations. This in turn implies the presence of
minimum-energy breathers in the system. Breathers are by definition time periodic, spatially
localized solutions of equations of motion for classical degrees of freedom interacting on a
lattice [38, 60]. We note that equations (4.1) satisfy these requirements. Since the saddle-
centre bifurcation is seen in the perturbative method, it is, therefore, imperative to study the
existence of breathers in the system numerically. We further note that in this system we
also find a chain of centres. The origin of this situation is explained in the text. Along
with the inversion of stability of fixed points [39, 61], we also observe the transformation of
heteroclinic orbits to homoclinic orbits. Since phase portraits are very rich in characteristics,
it is worthwhile to study them quite elaborately by extensively varying parameters such as µ
and g1 and also including more terms in S(µ, x) (equation (4.1)).

The presence of stable localized states in equation (2.5) is also investigated, albeit a more
systematic analysis, presumably by the discrete variational method, is required. This work
is indeed in progress. The effective masses of localized states are analysed here using the
effective Hamiltonian given by equation (4.5) [16, 17]. It is found that nearly unstaggered as
well as unstaggered localized states will always have positive effective mass. On the other
hand, nearly-staggered and staggered localized states can have both negative and positive
effective mass depending on the value of µ in equation (3.1). However, large-width but
small-amplitude nearly staggered and staggered localized states do have the expected negative
effective mass. Another important contribution in this section is to show the connection
between the effective mass, meff , and the function, B1(µ, g1, p, n) (equation (4.8)), which
determines the stability of fixed points.

It is further shown here numerically that all other solitary wave profiles (equations (6.3)
and (6.4)) under the dynamics described by equation (2.5) and for which the nonintegrable
term in equation (2.5) does not vanish, suffer distortion and emit phonons in the propagation.
Further investigations along this line, by altering the strength of the nonintegrable term and the
value of k, reveal that the extent of distortion and emission of phonons by the initial solitary
wave profiles (equations (6.3) and (6.4)) depends on the magnitude of the nonintegrable term.
We conclude from these two findings that any general solitary wave profile due to the presence
of the nonintegrable term in equation (2.5) is subject to both the dynamical imbalance between
the nonlinearity and the dispersion, and to the PN potential. This in turn implies that any
such profile can either be trapped by emitting phonons or the localized structure will spread
uniformly due to the effect of extra dispersion [5, 26, 42]. Notwithstanding the slowing down of
initial profiles observed in our simulations, our numerical study in this matter, however, is not
conclusive. So, a more elaborate study increasing the coupling constants in the nonintegrable
term in equation (2.5) and also changing the parameter µ in equation (3.1) is needed. This
will be done in future.

Finally, the N-AL equation (equation (2.5)), being a discrete nonintegrable nonlinear
equation permitting solitary wave-like solutions, provides us with a golden opportunity to
study an important phenomenon, namely the effect of both discreteness and nonintegrability
on the collision dynamics of solitary wave profiles. Other contextually relevant studies are
mentioned in the text [40, 43]. However, the noteworthy difference between our case and
other cases lies in the use of initial conditions. Here only the collisions of two solitary wave
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profiles are studied (equation (6.5)). In this study, we find that at least the interaction of two
solitary wave profiles has some universal features, meaning that the outcome does not depend
critically on the nature of the nonlinear equation. It is also equally true that we do not find so
far any systematic pattern in the dynamics. It is, therefore, necessary to study this problem
in detail both analytically and numerically to discern if there is any specific pattern in the
dynamics. Another important aspect to study is the fractal structure of the emerging profile
after the collision as a function of the initial velocity and the strength of the nonintegrable
term [33, 34].

We conclude by noting that this study offers a very significant insight into the transport
properties of the DHM. Furthermore, the N-AL equation can be used to study the transport
properties of localized states in soft molecular chains, having the coexistence of nonlinearity
and disorder, nonlinearity and quasiperiodicity or incommensurability in various parameters,
such as the hopping integral, J, and the nonintegrable coupling constants, gj , j = 1, 2, . . . .
Furthermore, the applicability of the N-AL equation in the study of exciton dynamics in
photosynthesis and in molecular solids should be explored.

Appendix A. Generalized Poisson bracket

We consider a dynamical system having 2N generalized coordinates,
{
φn, φ

�
n

}
, n = 1, . . . , N .

Let U and V be any two general dynamical variables of the system. We now define a
nonstandard Poisson bracket [2]

{U,V }{φ,φ�} =
N∑
n=1

(
∂U

∂φn

∂V

∂φ�n
− ∂V

∂φn

∂U

∂φ�n

) (
1 + λ|φn|2

)
. (A1)

When U = φm and V = φ�l , we have [16, 26, 57]{
φm, φ

�
l

}
{φ,φ�} = (

1 + λ|φm|2)δml. (A2)

From equation (A1), we further have for {m, l}
{φm, φl}{φ,φ�} = {

φ�m, φ
�
l

}
{φ,φ�} = 0. (A3)

Then, when U = φm and V = H , we have from equation (A1)

{φm,H }{φ,φ�} = (
1 + λ|φm|2) ∂H

∂φ�m
. (A4)

We then write for the dynamical evolution of the mth generalized coordinate, φm[16, 26, 63]

i
dφm
dt

= {φm,H }{φ,φ�} = (
1 + λ|φm|2) ∂H

∂φ�m
. (A5)

This is consistent because

i
dU

dt
=

N∑
n=1

(
∂U

∂φn
iφ̇n +

∂U

∂φ�n
iφ̇�n

)
=

N∑
n=1

(
1 + λ|φn|2

) (
∂U

∂φn

∂H

∂φ�n
− ∂U

∂φ�n

∂H

∂φn

)

= {U,H }{φ,φ�}. (A6)

We note now that when U = H , we have dH
dt = 0. In other words, H is a constant of

motion. Consider N given by equation (2.4). To show that it is a constant of motion, we write
H = H0 +H1 − 2

λ

(
ν
λ

− J
)N , where we define

H0 = J
∑
n

(
φ�nφn+1 + φ�n+1φn

)
+

2ν

λ

∑
n

|φn|2 (A7)
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H1 = −1

2

∑
n

l∑
j=1

g
j

0

(
φ�nφn+j + φ�n+jφn

)2
. (A8)

We then find that

i
dN
dt

= λ
∑
n

[(
φ�n
∂H0

∂φ�n
− φn

∂H0

∂φn

)
+

(
φ�n
∂H1

∂φ�n
− φn

∂H1

∂φn

)]
. (A9)

By using (A7) and (A8), it is very simple to show that the right-hand side of (A9) is zero.
Hence, N is a constant of motion.

Appendix B. Analysis of fixed points

We note that Ai(µ), i = 0, 1, 2 are even functions of µ; see equation (4.7). This, in turn
implies that Bi, i = 0, 1, 2 are also even functions of µ; see equation (4.8). We take g1 > 0
in this analysis. There will be no loss of generality by this assumption. We now note the
following points.

(i) B0(µ, p) → 0, asµ → 0. It can also be shown that B0(µ, p) is a monotonically
increasing function of µ. In other words, it is a monotonically increasing positive
semidefinite function of µ. These properties are true, irrespective of p being even or odd.

(ii) B1(µ, g1, p, n) → (−1)n, asµ → 0. Furthermore, it can be seen by plotting this function
against µ that B1(µ, g1, p, n) > 0, when µ → ∞. Both properties are true irrespective
of the nature of p. Furthermore, when n is even, B1(µ, g1, p, n) is a monotonically
increasing as well as a positive definite function of µ. On the other hand, when n is odd,
there exists a value of µ, say µr(g1, p) such that B1(µr, g1, p, n) = 0. Again, µr(g1, p)

has the following properties: (a) for a given value of g1, µr(g1, evenp) > µr(g1, oddp),
(b) irrespective of the nature of p, the value ofµr monotonically decreases with increasing
g1, and (c) µr(g1, evenp) → µr(g1, oddp) as g1 → ∞; see also figure 1.

(iii) B2(µ, g1) is a monotonically increasing positive semidefinite function of µ.

We now consider each case to determine the nature of fixed points from the linearized analysis.
We note that the classifications are done using standard analysis [51, 52].

Case I: n and p are both even. In this case, both B1(µ, g1, p, n) and B2(µ, g1) are positive.
Equation (4.10) defines a hyperbola. So, the fixed point is a saddle point.
Case II: n is even, but p is odd. Since the nature of these two functions remains the same,
equation (4.10) defines an ellipse. So, we have a centre.
Case III: Both n and p are odd. Again, µ > µr(g1, evenp). In this case, both B1 and B2 are
positive. So, equation (4.10) defines an ellipse and we have a centre.
Case IV: n is odd, but p is even. Furthermore, µ > µr(g1, evenp). In this case also, both B1

and B2 are positive. But due to the evenness of p, equation (4.10) defines a hyperbola and we
have a saddle point.
Case V: Both n and p are odd, but µ < µr(g1, oddp). In this case, while B2 is positive, B1 is
negative. So, equation (4.10) defines a hyperbola and the fixed point is a saddle point.
Case VI: n is odd, but p is even. Again, µ < µr(g1, oddp). In this case, equation (4.10)
defines an ellipse. So, we have a centre.
Case VII: Both n and p are odd. Again, µr(g1, oddp) < µ < µr(g1, evenp). In this case,
both B1 and B2 are positive. Since p is odd, equation (4.10) defines an ellipse. So, we have a
centre.
Case VIII: n is odd, but p is even. Furthermore, µr(g1, oddp) < µ < µr(g1, evenp). In this
case, while B1 is negative, B2 is, however, positive. Since p is even, equation (4.10) defines
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an ellipse. So, we have a centre. We also point out that same result will be obtained by
examining two eigenvalues of the coefficient matrix.

References

[1] Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University Press)
[2] Scott A 1999 Nonlinear Science: Emergence and Dynamics of Coherent Structures (Oxford: Oxford University

Press)
[3] See e.g. Remoissenet M 1996 Waves Called Solitons: Concepts and Experiments (Berlin: Springer)
[4] Kivshar Yu S and Malomed B A 1989 Rev. Mod. Phys. 63 761
[5] Sagdeev R Z, Meiseev S S, Tur A V and Yanevskii V V 1986 Nonlinear Phenomena in Plasma Physics and

Hydrodynamics ed R Z Sagdeev (Moscow: Mir) p 137
[6] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering

(Cambridge: Cambridge University Press)
[7] Ablowitz M J and Ladik J L 1975 J. Math. Phys. 16 598

Ablowitz M J and Ladik J L 1976 J. Math. Phys. 17 1011
[8] Takeno S and Homma S 1991 J. Phys. Soc. Japan 60 731
[9] Laedke E W, Spatschek K H and Turitsyn S K 1994 Phys. Rev. Lett. 73 1055

[10] Ghosh A, Gupta B C and Kundu K 1998 J. Phys.: Condens. Matter 10 2701
[11] Kundu K and Gupta B C 1998 Eur. Phys. J. B 3 23

Gupta B C and Kundu K 2002 Nonlinear Dynamics: Integrabilty and Chaos ed M Daniel, K M Tamizhmani
and R Sahadevan (New Delhi: Narosa) p 193

[12] Claude Ch, Kivshar Y S, Kluth O and Spatchek K H 1993 Phys. Rev. B 47 14228
[13] Aceves A B, De Angelis C, Peschel T, Muschall R, Lederer F, Trillo S and Wabnitz S 1996 Phys. Rev. E 53

1172
[14] Scott A C 1982 Phys. Rev. A 26 578
[15] Yomosa S 1983 J. Phys. Soc. Japan 52 1866
[16] Kundu K 2000 Phys. Rev. E 61 5839
[17] Vakhnenko A A and Gaididei Yu B 1986 Teor. Mat. Fiz. 68 350 (Engl. transl. 1987 Theor. Math. Phys.

68 873)
[18] Takeno S 1992 J. Phys. Soc. Japan 61 1433
[19] Hori K and Takeno S 1992 J. Phys. Soc. Japan 61 4263
[20] Konotop V V and Takeno S 1997 Phys. Rev. B 55 11342

Konotop V V and Takeno S 1998 Physica D 113 261
[21] Kivshar Yu S, Pelinovsky D E, Cretegny T and Peyard M 1998 Phys. Rev. Lett. 80 5032
[22] Davydov A S 1980 Zh. Eksp. Teor. Fiz. 78 789 (Engl. transl. 1980 Sov. Phys.–JETP 51 397)
[23] Bolterauer H 1990 Davydov’s Soliton Revisited, Self-Trapping of Vibrational Energy in Protein

ed P L Christiansen and A C Scott (NATO ASI Series vol 234) p 309
[24] Förner W and Ladik J 1990 Davydov’s Soliton Revisited, Self-Trapping of Vibrational Energy in Protein

ed P L Christiansen and A C Scott (NATO ASI Series vol 234) p 267
[25] Dmitriev S V, Kivshar Yu S and Shigenari T 2001 Phys. Rev. Lett. 64 056613
[26] Cai D, Bishop A R and Grønbech-Jensen N 1994 Phys. Rev. Lett. 72 591
[27] Johansson M and Kivshar Yu S 1999 Phys. Rev. Lett. 82 85
[28] Zhou C, He X T and Chen S 1992 Phys. Rev. A 46 2277
[29] Bullough R K and Caudrey P J 1980 Topics in Current Physics: Solitons ed R K Bullough and P J Caudrey

(Berlin: Springer) p 6
[30] Aubry S 1976 J. Chem. Phys. 64 3392
[31] Kudryavtsev A E 1975 Pis. Zh. Eksp. Teor. Fiz. 22 178 (Engl. transl. 1975 JETP Lett. 22 82)
[32] Getmanov B S 1976 Pis. Zh. Eksp. Teor. Fiz. 24 323 (Engl. transl. 1976 JETP Lett. 24 291)
[33] Anninos P, Oliveira S and Matzner R A 1991 Phys. Rev. D 44 1147
[34] Yang J and Tan Yu 2000 Phys. Rev. Lett. 85 3624

Yang J and Tan Yu 2001 Phys. Lett. A 280 129
Tan Yu and Yang J 2001 Phys. Rev. E 64 056616

[35] Friesecke G and Wattis J A D 1994 Commun. Math. Phys. 161 391
[36] Toda M 1981 Theory of Nonlinear Lattices Springer (Series in Solid-State Sciences vol 20) (Berlin: Springer)
[37] Friesecke G and Pego R L 1999 Nonlinearity 12 1601

Friesecke G and Pego R L 2002 Nonlinearity 15 1343



A study of a new class of discrete nonlinear Schrödinger equations 8133

[38] Marı́n J L and Aubry S 1996 Nonlinearity 9 1501
[39] Marı́n J L, Aubry S and Florı́a L M 1998 Physica D 113 283
[40] Cretegny T, Livi R and Spicci M 1998 Physica D 119 88
[41] Cretegny T, Dauxois T, Ruffo S and Torcini A 1998 Physica D 121 109
[42] Aubry S and Cretegny T 1998 Physica D 119 34
[43] Bang O and Peyard M 1996 Phys. Rev. E 53 4143
[44] Dunlap D H, Wu H-L and Phillips P 1990 Phys. Rev. Lett. 65 88
[45] Kundu K, Giri D and Ray K 1996 J. Phys. A: Math Gen. 29 5699
[46] Kivshar Y S and Campbell D K 1993 Phys. Rev. E 48 3077
[47] Takeno S 1990 Davydov’s Soliton Revisited, Self-Trapping of Vibrational Energy in Protein ed P L Christiansen

and A C Scott (NATO ASI Series vol 234) p 31
[48] Stegeman G I and Segev M 1999 Science 286 1518

Segev M and Stegeman G 1998 Phys. Today 51 42
[49] Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043

Anastassiou C, Segev M, Steiglitz K, Giordmaine J A and Mitchell M 1999 Phys. Rev. Lett. 83 2332
[50] Salerno M 1992 Phys. Rev. A 46 6856
[51] Konotop V V and Salerno M 1997 Phys. Rev. E 55 4706

Konotop V V and Salerno M 1997 Phys. Rev. E 56 3611
[52] Davydov A S and Kislukha N I 1976 Zh. Eksp. Teor. Fiz. 71 1090 (Engl. transl. 1976 Sov. Phys.–JETP 44 571)
[53] Rashba E I 1982 Excitons ed E I Rashba and M D Sturge (Amsterdam: North-Holland)
[54] Toyozawa Y 1983 Molecular Aggregates (Springer Series in Solid-State Sciences vol 49) ed P Reineker,

H Haken and H C Wolf (Berlin: Springer)
[55] van Amerongen H, Valkunas L and van Grondelle R 2000 Photosynthetic EXCITONS (Singapore: World

Scientific) chapter 6 pp 197–240
[56] Kaup D I 1976 SIAM J. Appl. Math. 31 121
[57] Drazin P G 1992 Nonlinear Systems (Cambridge: Cambridge University Press)
[58] Alligood K T, Sauer T D and Yorke J A 1997 Chaos: An Introduction to Dynamical Systems (New York:

Springer)
[59] Arrowsmith D K and Place C M 1982 Ordinary Differential Equations (London: Chapman and Hall)
[60] Flach S, Kladko K and MacKay R 1997 Phys. Rev. Lett. 78 1207
[61] Campbell D K and Peyrard M 1990 Chaos ed D K Campbell (New York: AIP) p 305
[62] Cretegny T, Aubry S and Flach S 1998 Physica D 119 73
[63] Das A 1989 Integrable Models (Singapore: World Scientific)


